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ABSTRACT 

This report presents the results of a study, the main aim of which was 
proper prediction of sea clutter characteristics and modelling of sea 
clutter including both the temporal and spatial properties of the 
return signals. More detail has been given to the K-distribution as 
this model enables the simulation of clutter with a good level of 
approximation to the real data. 
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Simulation of Sea Clutter Returns 

Executive Summary 

This report represents the results of a study performed under the task ADA95/080- 
TSSD support for Project AIR 5276. Under this task, TSSD is providing advice to the 
RAAF on several aspects of the upgrade of the P3C Orions with a focus on the Israeli 
designed EL/M 2022 maritime surveillance radar system being installed as part of this 
upgrade. 

The design and selection of radars and radar signal processing algorithms for use in a 
sea clutter environment is directly influenced by knowledge of sea clutter properties. 
In practice, the parameters of the amplitude distributions, correlation properties and 
phase characteristics of the targets and clutter are not known a priori, and a radar must 
adapt its processing to set the detection threshold at an appropriate level for the 
conditions actually encountered. Therefore it is necessary to be able to predict the 
range of conditions likely to be encountered, their dependence on various radar 
system parameters and their likely rate of change, both temporally and spatially. 
Robust models have been developed describing sea clutter over a wide range of 
operating and environmental conditions, allowing the analysis of the effects of various 
processing and system changes mathematically. 

This report presents the results of a study, the main aim of which was proper 
prediction of sea clutter characteristics and modelling of sea clutter including both the 
temporal and spatial properties of the return signals. Amplitude, phase and correlation 
characteristics of the sea clutter, and different methods for the prediction of the 
parameters of these characteristics have been analysed. 

As an accurate prediction of performance is usually more dependent on the accurate 
modelling of correlation features than on the choice of amplitude distribution, more 
attention has been given to the K-distribution model of the sea clutter. It provides a 
good description of the clutter amplitude statistics and has particular advantages in 
facilitating proper handling of the temporal and spatial fluctuations of the clutter. 

The procedures for simulation of the K-distributed sea clutter with the desired 
parameters of the amplitude distribution and the specified temporal and spatial 
correlation properties have been suggested and implemented. 

The analysis and comparison of the experimentally collected and synthetically 
generated data show that the K-distribution is the most promising model of sea clutter 
which simulates the clutter with a good level of approximation to the real data. 

Simulators based on the developed models can be used to generate realistic sea clutter 
data which can be input to computer models of the radar system and the resulting 
performance measured. 
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1. Introduction 

The design and selection of radars and radar signal processing algorithms for use in a 
sea clutter environment is directly influenced by knowledge of sea clutter properties. 
In practice, the parameters of the amplitude distributions, correlation properties and 
phase characteristics of the targets and clutter are not known a priori, and a radar must 
adapt its processing to set the detection threshold at an appropriate level for the 
conditions actually encountered. Therefore it is necessary to be able to predict the 
range of conditions likely to be encountered, their dependence on various radar system 
parameters and their likely rate of change, both temporally and spatially. Robust 
models have been developed describing sea clutter over a wide range of operating and 
environmental conditions, allowing the analysis of the effects of various processing 
and system changes mathematically. In addition, simulators based on these models 
can be used to generate realistic sea clutter which can be input to computer models of 
the radar system and the resulting performance measured. 

This report presents the results of a study, the main aim of which was proper 
prediction of sea clutter characteristics and modelling of sea clutter including both the 
temporal and spatial properties of the return signals. Amplitude, phase and correlation 
characteristics of the sea clutter, and different methods for the prediction of the 
parameters of these characteristics have been analysed. The procedures for simulation 
of sea clutter returns with specified properties have been suggested and implemented. 
More detail has been given to the K-distribution as the most promising model of sea 
clutter which allows the simulation of clutter with a good level of approximation to the 
real data. 

2. Prediction Of Sea Clutter Characteristics 

There are many natural factors that determine the characteristics of the radar 
backscatter from the sea, including the sea state, the wind speed, duration and 
direction, the wave speed, the fetch and the swell direction. There are also several 
radar parameters that will affect the measured backscatter including the radar carrier 
frequency, the bandwidth (or range resolution), antenna beamwidth, two-way antenna 
pattern value at the sea surface, noise temperature, pulse repetition frequency, 
transmitted power, receive and transmit polarisations, range to the centre of the clutter 
cell, and the antenna angle of incidence relative to the sea surface. The knowledge of 
these parameters allows the prediction of amplitude and phase characteristics of sea 
clutter and its temporal and spatial correlation properties. 
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2.1 Amplitude characteristics of sea clutter 

The radar returns from the surface of the sea are noise-like spatial and temporal 
stochastic processes. Their characterisation is one of the central problems in optimum 
radar performance analysis. Unlike thermal noise, most clutter returns are correlated 
non-Gaussian processes. Thus, for example, high resolution, low grazing-angle sea 
clutter data exhibit significantly larger amplitude variances than those predicted by the 
Rayleigh Probability Density Function. Therefore, the Gaussian model for the inphase 
and quadrature components of the radar returns should be replaced with other more 
realistic and self-consistent statistical models that agree with the experimental data. 
This section of the report briefly presents the models which have been applied to sea 
clutter amplitude distribution and discusses the influence of different factors on the 
parameters of these distributions. Particular attention is paid to the K-distribution as 
the most promising model of sea clutter. 

2.1.1 The choice of sea clutter amplitude distribution 

The most popular models for describing of sea clutter amplitude distributions are: 
Rayleigh [1-4], Log-Normal [4-8], Weibull [4, 9-12] and K-distribution [13-20]. The 
model Cumulative Distribution Function (CDF), Probability Density Function (PDF), 
and moments of these distributions are presented in Table l1. In this table, a is the 
amplitude of the return signals and is defined for the range 0 < a £«». 

Table 1 Popular models for sea clutter amplitude distributions 

Model CDF PDF Moments 
Rayleigh 

FR(<i) = l-exp(-(^-)2) /«<"> = ^T«P(-<li-)2) E(a ') = d/ni + ~) 

Log-Normal lna-n 
/rt(a) = 0(__) 

1                   <liKa)-m! 

£<ar)=exp<ry+ir2<j2) 
'L^I- VUKXM "•"         la'         > 

Weibull Fw(a) = 1 - «p|-(^-)T ) 
T     "   Y-l              a   r £(</) = mrr(i + —) 

K-distribution 2       ca  v /*(')=r£)<f)W|W) Cl  r,   2rr(0.5r+l)r(0.5r+v) 
i(o  )=  

r(v)cr 

definitions: GJ is a scale parameter for the Rayleigh and Weibull distributions; r is the order of 
moment; T(z) is the Gamma function; ln(a) is Normally distributed with mean \i and variance 

Cf   for Log-Normal distribution; y is a shape parameter for the Weibull distribution; c is a scale 
parameter and v is a shape parameter for the K-distribution; ATv_,(z) is the modified Bessel 

function of the second kind of order v and O(z) = f   , exp< \dt. 
Lyf2n 2 
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From a review of available literature [1-20] the following conclusions can be drawn: 

1) For large illuminated patch sizes and high grazing angles ( (p > 10 ) it is found that 
sea clutter obeys the Central Limit Theorem and has Rayleigh distributed amplitude 
statistics. The range correlation is commensurate with the pulse length and, if the 
transmitter frequency is stepped by the pulse bandwidth each pulse, the results are 
independent from pulse to pulse. 

2) The following conditions are known to result in echo PDFs that have longer tails 
and the clutter is described as "spiky": 

a) higher resolution; 
b) lower grazing angles of incidence; 
c) rougher sea states; 
d) horizontal polarisation of transmitted and received signals. 

In these cases, the amplitude statistics have been modelled by Log-Normal, 
Weibull and K- distributions. All these distributions can produce reasonable fits 
to observed     clutter statistics in different conditions. 

3) The Log-Normal distribution is always spikier than either K- or Weibull. At v=0.5 
the K-distribution and the Weibull are identical. Over a large range of v they are 
very similar, with the K-distribution being slightly more spiky than the Weibull for 
larger v and slightly less spiky for smaller v. The K-distribution is mathematically 
much more difficult to work with than others. 

4) The statistical results of many experiments provide evidence that the K-distribution 
can serve as a limiting distribution for sea clutter. 

5) The K-distribution is the most appropriate model for sea clutter in the low 
Probability of False Alarm (PFA) region. 

6) Except for the K-distribution, other non-Rayleigh distributions are not derived from 
a physical model or clutter scattering mechanism. Their choice and validation are 
based only on their agreement with experimental data. As a result, although these 
models of spiky sea clutter can be adequately fitted to the amplitude statistics, they 
do not describe the temporal and spatial correlation in the data. The fact that this 
problem is overcome with the K-distribution has a great importance because the 
accurate prediction of performance is usually more dependent on the accurate 
modelling of correlation features than on the choice of amplitude distribution. 

These conclusions explain the reasons why the K-distribution has received widespread 
attention recently as a model for sea clutter. It provides a good description of the 
clutter amplitude statistics and has particular advantages in facilitating proper 
handling of the temporal and spatial fluctuations of the clutter. 
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2.1.2 K-distributed clutter model 

The K-distribution model has its origin in the observation that, over a wide range of 
conditions, the sea clutter returns for high resolution radars can be well modelled by 
two components [15-20]. 

The first component is an underlying mean level obeying a generalised Chi- 
distribution: 

2^2v    2v-l 

/(30 = -j^pexpH/V), (1) 

where T(v) is the Gamma function, v is a shape parameter and d is a scale parameter 

2 V 

such that d   =       2   where E(y ) is the average power of the clutter. 

This mean level is a slowly varying component which can be associated with a 
bunching of scatterers corresponding to the gross wave structure of the sea surface. It 
has a long temporal decorrelation period (a correlation time of the order of seconds) 
and is unaffected by frequency agility. The slowly varying component has 
considerable spatial correlation which displays periodic effects and is coupled to the 
temporal correlation. 

The second component is termed the 'speckle' and its amplitude is Rayleigh 
distributed: 

/Hy) = —rexP(-—r), (2) 

where  y is the underlying mean level determined by (1). 

The speckle is a fast varying component which can be identified with the changing 
interference between capillary wave scatterers. The speckle has a correlation time of 
the order of milliseconds, and can be decorrelated using frequency agility. This fast 
varying component has spatial correlation commensurate with the pulse length and is 
in all ways similar to noise-like clutter as its amplitude distribution confirms. 

The overall amplitude of the clutter thus obeys a K-distribution given by 

fKW = ]f(a\y)f(y)dy=   2c 

T(v) 
ca 
— \K^{ca), (3) 
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where £v_,(z) is an v"1-order modified Bessel function of the second kind and 

c = 4nd is a scale parameter. 

According to (3) the K-distribution is a form of modulated Gaussian distribution: a 
Gaussian process is modulated by a process whose PDF is a generalised Chi- 
distributed. This equates to modulating the power of the Rayleigh envelope of the 
Gaussian signal with a Gamma-distributed variable. When applied to radar sea clutter, 
this represents the case where the clutter amplitude in a given resolution cell exhibits 
rapid Rayleigh fluctuations, the mean power of which varies in time with a slow 
fluctuation rate, and from one resolution cell to the next, according to the Gamma 
distribution. 
If the sea clutter amplitude has a K-distribution, the mean clutter power value is 
defined by relation: 

c 

The shape parameter v defines the spikiness of sea clutter: the less is the value of this 
parameter, the more spiky is sea clutter. In practice, the value for this parameter of the 
distribution varies between the values of 0.1, corresponding to very spiky data and 20, 
corresponding to approximately Rayleigh distributed data. 

The scale parameter c is responsible for the power characteristic of returned echo 
signals: the less is value of the scale parameter, the more powerful are reflected signals 
from the sea surface. For the distribution with the shape parameter v, the scale 
parameter can be predicted from a knowledge of the clutter reflectivity and the radar 
parameters: 

1 
4v 

(6) 

P'G- (to)3*3'0'     2    } 

where P, is the transmitted power, G, is the transmit gain, X is the radar wavelength, 

/4 is the two-way antenna pattern value at the surface, R is slant range to the clutter 
cell, 0 B is the antenna pattern beamwidth, T pulse is the pulse width, c, is the speed of 

light and G 0 is the mean clutter reflectivity value. 

Several empirical models for the prediction of the clutter envelope distribution 
parameters have been derived, including models for clutter reflectivity and the K- 
distribution shape parameter [21-32]. These models are useful in providing guidance 
on the range of values likely to be encountered rather than providing any precise 
insight into the various parametric dependencies. 
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2.1.3 Models for mean clutter reflectivity 

Several models of a mean clutter reflectivity, a0 have been developed based on 
different analytical methods in electromagnetic scattering theory which are applicable 
to the analysis of scattering from ocean waves [2,3,22]. These models use a lot of 
simplifying assumptions and can be used for prediction of the mean clutter reflectivity 
only for limited number of possible situations. Thus, the models do not provide good 
results for horizontal polarisation at low grazing angles because of the lack of useful 
analytical techniques for these kind of situations. Clearly, the scattering mechanism at 
microwave frequencies is complex and complicated further by multiple scattering on 
the sea surface. The present theoretical knowledge of ocean backscatter at microwave 
frequencies is not sufficiently advanced such that the magnitude of sea clutter return 
may be accurately predicted from purely analytical considerations. As a result, a 
number of semi- empirical models for the sea clutter reflectivity calculation have been 
developed. The approach is to define the theoretical relationship among model 
parameters, and use actual data to derive the model constants. This semi-empirical 
approach has been used by Sittrop (SIT) [23]; the Georgia Institute of Technology (GIT) 
[24]; the Technology Service Corporation (TSC) [25] and Dockery (HYB) [26]. The 
following sections briefly describe the models and their overall capabilities. 

1) SIT 

Sittrop provides an empirical model for the calculation of ocean mean clutter 
reflectivity and its spectral width at X- and Ku- bands. His model, described in detail 
in Appendix 1, gives the value of the mean clutter reflectivity as a function of wind 
speed and grazing angle, and assumes that sea clutter is entirely caused by wind 
generated capillary waves. Sittrop argues that the wind speed can only be related to 
sea state, representing specific wave heights if the wind has been steady for several 
hours, in a 'fully developed' sea. However, if the wind ceases to blow, these wave 
heights remain for a certain time, but the capillary waves die out almost instantly. This 
effect will have an immediate impact on the clutter return which will reduce 
accordingly. Hence a determination of sea clutter based on sea state observations may 
result in too low values of the mean clutter reflectivity if the wind speed has reduced, 
but the wave height has remained the same. Consequently sea clutter description is 
expected to be more reliable when wind speeds are used rather than sea states, in 
particular under diminishing wind conditions. Sittrop therefore recommends the use 
of wind speed over sea state for prediction of sea clutter returns, especially for the 
situation of abating wind. Sittrop's model provides estimates of sea clutter reflectivity 
for upwind and crosswind look directions and horizontal (HH) and vertical (W) 
polarisations. Sittrop compares his model with the data presented by Nathanson [2] 
and concludes that his model is in good agreement, especially for the lower grazing 
angles and higher sea states. 
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2) GIT 

The GIT model is the best known example of attempts to produce models which 
combine empirical factors with mathematical models of the various mechanisms 
involved in the backscatter of energy from the sea surface. The Georgia Institute of 
Technology has developed a deterministic parametric model for the mean sea clutter 
reflectivity, described in detail in Appendix 2, which is a function of grazing angle, 
wind speed and /or average wave height, angle between wind direction and antenna 
boresight, radar wavelength, and polarisation. In this case the mean clutter reflectivity 
is broken down into three factors: an interference (multipath) factor, a wind speed 
factor and a wind (sea) direction factor. The first factor is a theoretically derived factor 
for multipath interference for a Gaussian distribution of wave heights. The second and 
third factors were derived empirically. The wind direction factor describes the 
variation due to aspect angle between the antenna and sea direction. 

A significant feature of the GIT model is the usage of both wave height and wind 
speed, permitting a more complete description of the ocean conditions. As mentioned 
before, one of the most complex problems in defining the sea conditions is the 
interaction between the wind and the swell. The time taken for a swell to develop is 
very much longer than the time for the wind to alter direction. In the GIT model, wind 
and sea directions are assumed to be highly correlated, as are wind speed and average 
wave height. However, for changing conditions, wind speed and average wave height 
could be considered as separate data. The wave height is used to introduce an 
interference effect due to multipath propagation that will cause faster clutter fall off at 
low grazing angles. This low angle fall-off is governed by a factor which is controlled 
by wave height, has a behaviour similar to the spherical earth propagation factor, and 
forces a transition in range dependence from R'3 to /T7. If a particular grazing angle 
is in the R~3 range dependence region then further increases in wave height will have 
no effect on clutter amplitude at that grazing angle. 

The GIT model can be used over a broad frequency range (1-100 GHz) and provides 
full direction dependence from upwind to downwind. 

3) TSC 

The Technology Service Corporation developed a model that is based on a fit to data 
compiled by Nathanson [2]. This model, described in detail in Appendix 3, is a 
function of grazing angle, Douglas sea state number, wind aspect angle, radar 
wavelength, and polarisation. The TSC model is similar to the GIT model in functional 
form and has comparable capabilities. However, several constants, and dependencies 
of some variables, are slightly different. The TSC model includes anomalous 
propagation data, so it does not fall off as rapidly with range as GIT model. In this 
model an effective wind speed and wave height are calculated using Douglas sea state 
number. However there is an option to input these two parameters independently. The 
TSC model can be used over a broad frequency range (0.5-35 GHz) and provides full 
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direction dependence from upwind to downwind. This model assumes the 
Nathanson's data is the average of all look directions, and as a result, treats the data as 
crosswind. The TSC model results for crosswind direction are in close agreement to 
these data. 

It was suggested [22] that for cautious performance prediction or when propagation 
conditions are unknown, it may be better to use the TSC model rather than the SIT or 
the GIT models because it more closely represents average conditions. 

4)HYB 

The hybrid (HYB) model that includes work by Barton [27], summaries Nathanson's 
data [2] and features of the GIT model. This model, described in detail in Appendix 4, 
also takes into account the fact that Nathanson's data have been averaged over all 
wind directions. The mean clutter reflectivity using the HYB model is calculated by 
adding to the reference reflectivity of sea state 5, grazing angle 0.1°, vertical 
polarisation and upwind look direction four decibel adjustments for arbitrary values of 
the sea state, grazing angle, polarisation and look direction. A transitional grazing 
angle is based on the definition of the GIT model and Barton's results. A polarisation 
adjustment has been taken directly from the GIT model, which was developed as an 
empirical fit to the Nathanson's data. 

2.1.4 Comparison of the mean clutter reflectivity models 

Table 2 summarises the model capabilities. All the models exhibit a number of similar 
trends: 

1) The mean clutter reflectivity increases with sea state, frequency, and grazing angle. 

2) The grazing angle dependence is particularly strong at low grazing angles. 

3) The mean clutter reflectivity decreases as the look direction moves away from the 
upwind direction. 

4) The mean clutter reflectivity value for vertical polarisation is generally greater than 
for horizontal polarisation, particularly for low sea states. As sea state increases, the 
reflectivity for horizontal polarisation may exceed that for vertical polarisation, 
particularly at low grazing angles. 

The models are in reasonable agreement for higher grazing angles ( ie those greater 
than 3 ) and higher sea states, but the GIT and SIT models give values consistently 
lower than the TSC and HYB models for low grazing angles and low sea states. At 
small angles, reflectivity in the GIT model varies approximately as cp4 where (p is the 

grazing angle; the relationship is closer to (p2 in the other models. 
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The reasons for such differences can be explained by differences in the data from 
which the model constants were derived. Thus, it was indicated that much of the data 
presented in [2] and hence the models derived from it (TSC, HYB) may be biased high 
in the low grazing angle range. There are two main sources of this bias. The first is 
related to the fact that much of the earlier sea clutter data was collected using low 
power radars and as a result only the clutter having sufficiently high clutter-to-noise 
ratio provided useful data points. The second and more significant source of the bias is 
ducting, which is believed to be a major contributor to sea clutter at very low grazing 
angles [28-30]. The records for GIT model were culled of any ducting. The other 
empirical models provide a fit to mean clutter cross-section measurements obtained 
under a variety of conditions that include ducting. 

Table 2 Mean clutter reflectivity mode 1 capabilities 

Parameter Model 
SIT GIT TSC HYB 

Indicated carrier frequency, GHz 9.3,17 1-100 0.5 - 35 0.5 - 35 
Environment: 

Average wave height (m) 
Wind (kts) 

No 
<40 

0to4 
3-30 

Douglas 
sea state 

(0-5) 

Douglas 
sea state 

(0-5) 
Geometry: 

Grazing angle (degrees) 
Look angle (degrees) 

0.2 -10 
0,90 

0.1 -10 
0-180 

0.1 - 90 
0-180 

0.1 - 30 
0-180 

Polarisation HH,W HH,W HH,W HH,W 
Input model parameters: 

Radar wavelength 
Polarisation 

Sea state 
Wind speed 

Average wave height 
Grazing angle 

Wind aspect angle 

Yes 
Yes 
No 
Yes 
No 
Yes 
Yes 

Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
No 
No 
Yes 
Yes 

Yes 
Yes 
Yes 
No 
No 
Yes 
Yes 

It is important to realise that the spread in values of the mean clutter reflectivity 
observed between the various models for a given set of conditions is not dissimilar to 
that which might be encountered in practice, especially given the difficulty in 
characterising the actual sea conditions [21]. The value of these models lies in their use 
for radar design. They allow the expected range of the mean clutter reflectivity values 
to be determined. In the case of constant false alarm rate detection, a radar has to adapt 
its threshold according to the spatial variations of reflectivity and the corresponding 
clutter amplitude statistics. The mean clutter reflectivity models described above 
provide good estimates of the range of values of the mean clutter reflectivity likely to 
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be encountered in different conditions and the expected variation with radar 
parameters and viewing geometry.2 

2.1.5 Empirical models for the prediction of the shape parameter 

Another important parameter to investigate is the shape parameter v of the K- 
distribution, which provides information about the amplitude statistics (particularly 
spikiness) and also some of the correlation properties. Only a limited number of 
empirical models exist for the prediction of this parameter and all of them have been 
developed for X-band. 

An empirical model was developed by Ward [17,31], relating this parameter to the 
grazing angle, the cross-range resolution, the sea swell direction and polarisation. This 
model was derived from data obtained from a radar having a 30 ns pulse length (a 
radar range resolution of 4.2 m) and, in its original form, vertically polarised returns. 
Later it was validated for horizontally polarised returns as well. The parametrization 
of the shape parameter has been achieved by matching the spread of results to a simple 
functional form and presented by formula: 

2 5 
log(v)=-log(<p) + -log(/)+8-* , (7) 

3 o 

where 
V is the estimated value of the shape parameter, 
/ is the cross-range resolution, 
(p is the grazing angle in degrees (0.1° < (p < 10°), 

8 introduces the aspect dependency as follows: 

8 = —-   for up or down swell directions; 

_        1 
8 = +—   for cross-swell directions; 

8=0     for intermediate directions or when no swell exists, 

k describes the polarisation effects with k = 1 for vertical and  it = 1.7 for 
horizontal polarisation. 

According to [32], the variation with swell direction can also be approximated by a 
cosine function: 

8=--cos(28), (8) 

2At this stage it is necessary to analyse existing sea clutter data which were collected by the 
Defence Science and Technology Organization in Australia during several trials in order to 
clarify what sea clutter model provides the best results for Australian environmental conditions. 
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where the angle  6   is zero when the boresight is pointed in the direction of 
propagation of the swell. 

The main conclusions from analysis of this empirical model for the shape parameter 
are: 

1) for horizontal polarisation the value of the shape parameter is lower than for 
vertical polarisation for the same set of environmental and radar parameters. It 
means that with horizontal polarisation, the clutter is spikier and pulse to pulse 
correlation is greater than with vertical polarisation in similar conditions; 

2) a small grazing angle implies smaller shape parameter; 

3) there is no strong statistical trend with sea state, wind speed or aspect angle relative 
to wind direction; 

4) aspect angle variation depends on the swell and long wavelength sea wave content 
of sea spectrum: smaller values of the shape parameter are characterised for up and 
down swell directions, larger values are usual for across swell direction and 
medium values of the shape parameter are typical for the intermediate directions; 

5) at different ranges, the cross-range patch size is different due to the antenna 
footprint; there is a strong trend for increased values of the shape parameter with 
increased patch size; 

6) since each parameter is matched separately to variations with the shape parameter, 
complex interdependencies may be missing. 

Although theoretical considerations indicate that the shape parameter is dependent on 
the range resolution this model does not include such effect. As an initial guide to the 
range of values expected, the relationship between the shape parameter and range 
resolution is of the same form as that with the cross-range resolution. However, the 
precise relationship is more complex and depends on the relative scaling of the radar 
pulse length and the spatial correlation of the clutter returns, which will in turn often 
be determined by the sea swell wavelength [33]. Thus, the trend is for the shape 
parameter to increase with patch size, ie the clutter becomes less spiky, approaching a 
Rayleigh distribution, but the precise relationship changes according to changing 
spatial correlation properties associated with the wave and swell structure of the sea. 

A second empirical model for the shape parameter has been proposed by Ward and 
Wicks [32]. Further data has been collected with the same range resolution, and added 
to on the original data base used to generate the first model, allowing the new 
empirical model to be developed. In this case least squares fits have been made 
separately for up/down swell and cross-swell directions, and for horizontally as well 
as vertically polarised data. The results are of the form: 

11 
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log(v) = Alog((p) + ßlog(/) + C, (9) 

with the values A, B and C being presented in Table 3, where the following definitions 
were used: U/D - up or down swell direction; X - cross-swell direction, H - horizontal 
polarisation, V - vertical polarisation. 

Comparison of the two models shows that the new model provides a wider spread of 
values of the shape parameter for the same values of grazing angle and cross-range 
resolution than was observed in the original model. The disadvantage of the second 
model is that it does not allow the prediction of the shape parameter for intermediate 
directions. Also, the root-mean-square error in log(v) is greater for the second 
empirical model than for the first [32]. 

Table 3 Ward's and Wick's model constants 

Polarisation Swell A B C Comments 
H U/D 0.402 0.461 -1.135 150m</<300m 
H X 0.250 0.790 -1.833 150m</<300m 
V U/D 0.834 0.707 -1.304 
V X 1.040 1.227 -2.418 

These empirical models of the shape parameter are strictly only for a radar operating 
with a pulse length of about 30 ns (a radar range resolution of about 4 m). An attempt 
was made by Ryan and Johnson [34] to use additional data for different pulse lengths 
to modify the Ward model to include a pulse dependence; the range resolution was 
found to have the most dominant effect on the shape parameter, with the shortest 
pulse giving the smallest value of the shape parameter. The modified Ward model is 
given by: 

log(v) = -log(9) + -log(/)+5-*+log(-^)log(—)log(5.5(p)08 , (10) 

where T pulst is pulse length in nanoseconds. 

This model allows the prediction of the shape parameter for radars operating with a 
pulse length longer than 30 ns. While the modified model appears to fit the data 
considered by authors very well, further validation is required using additional data 
sets. 

Unfortunately, no models have been developed yet for a radar range resolution less 
than 4 m. Therefore, it remains necessary to validate the existing models for such cases 
using collected data sets. 

12 
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2.2 Phase characteristics of sea clutter 

Consider now the extension of the compound K-distribution description to the case of 
coherently detected radar sea clutter. A coherent radar measures the complex received 
signal rather than just the magnitude. Coherent detection of radar sea echo allows 
motions to be evaluated by determining the rate of change of phase. In this way 
coherent processing may additionally be exploited to measure both ocean surface 
characteristics and to discriminate targets from clutter by virtue of their relative 
velocities. 

It is generally accepted that the phase component of sea clutter is Uniformly 
distributed on 2n [16]. This follows from the fact that the sea clutter return is a result of 
the interacting returns of a very large number of individual reflectors distributed over 
the area of the surface within the range cell being considered. 

The combined return from a large number of ever-changing reflectors on a patch of the 
sea surface is subject to very complex constraints on motion and this is reflected in the 
observation of complicated motion-related (ie Doppler) characteristics of sea clutter: 
the Doppler spectrum of sea clutter is much wider than, for example, the Doppler 
spectrum of ground clutter, and is non-stationary. 

One explanation for the frequency spread of signals returned from sea clutter is that 
the distribution of radial velocities of the scatterers causes a distribution of Doppler 
frequencies [3]. These scatterers may be either individual wavelets, wind-blown spray 
and foam at higher sea states, gravity waves and swell, or any combination of these. 
When the spread of the velocity distribution increases, such as when the surface of the 
sea becomes more agitated, the clutter spectrum also broadens. It was shown [3], that 
an almost linear dependence of bandwidth on wind speed or sea state exists. Attempts 
to derive differences in upwind, downwind, and crosswind spectral widths proved 
inconclusive. At this time, it is assumed that spectral width is independent of wind 
direction. 

Experimentally collected sea clutter data exhibits a complex relationship between the 
local intensity and the spectral shape. The modulation of intensity is a result of 
changes in the integrated power of the spectrum as a function of time. However, 
according to published results of sea clutter studies [15,17], the normalised form of the 
spectrum is not constant, but has a changing shape and Doppler shift. While the 
intensity modulation is dominated by the swell structure in the sea surface, the form of 
spectrum is additionally affected by the local gusting of the wind. 

Generally, the time averaged spectrum of sea clutter is asymmetrical, with a bias 
towards positive or negative Doppler frequencies and a longer spectral tail in the 
direction of the Doppler shift. This bias is associated by some researchers with the 
direction of the prevailing wind blowing above the sea surface [17]. On the other hand, 
some others reported that there was no consistent correlation between the recorded 
wind direction and the direction of maximum Doppler shift in the sea clutter 
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throughout the experiment period and suggested that the observed Doppler shift was 
at least partly the result of ocean current, which was known to be present in the area of 
experiments [4]. 

Significantly, there is no assurance that sea clutter observed in the presence of ocean 
currents will be similar to that observed from a wind driven sea surface. Nevertheless, 
it would be qualitatively informative to compare the results assuming similar sea 
conditions. The reasoning is that in an open ocean a sea wave travelling in a given 
direction could be a result of a steady wind blowing in the same direction. 

Thus, it was reported that for both sea and ocean observations, the mean Doppler shift 
of the averaged spectrum is significantly different for horizontal and vertical 
polarisations: in all cases, except that of crosswind, the Doppler shift for a horizontal 
polarisation sea clutter spectrum is greater than that for vertical polarisation for similar 
sea conditions, suggesting that a different set of scatterers are contributing to the 
received signals. More detailed analysis of the dependency of the Doppler shift of the 
averaged spectrum for both polarisations on the direction of look of the radar with 
respect to the sea surface is presented in [17]. According to the results of this analysis, 
data for both polarisations show a cosinusoidal dependence on the direction of the 
wind, with a zero Doppler shift when looking across-wind. This conclusion is in 
agreement with observations reported by some other authors. 

The results of experimental measurements [15,17] show, that despite the complexity of 
the phase characteristics of sea clutter, the compound form of the K-distribution is still 
applicable for the description of statistical properties of high resolution, coherently 
detected sea clutter. 

It can be readily shown that the statistical distribution for inphase and quadrature 
components arising from the K-distributed envelope PDF is a generalised Laplace 
distribution [15]: 

y^A 2b/2 A    v-!/ I— 
f(a,) = f(aQ) = Van^Kv_,{2aHQ)4b)  , 

r(v)7t y2 
(ID 

where a, is the amplitude of the inphase component, aQ is the amplitude of the 

quadrature component, b is a scale parameter and v is a shape parameter. 

2.3 Correlation properties of sea clutter 

It is well understood that sea clutter models based only on single-point statistics ( eg 
the amplitude distribution ) are misleading in that most detection algorithms use 
temporal or spatial signal processing. In order that the performance prediction be 
correct, the correlation functions used in the model must comply with those obtained 
from experimental data. As mentioned before, one of the greatest advantages of the K- 
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distribution model is that it provides the foundation for a full quantitative treatment of 
correlation. The following sections of the report discuss temporal and spatial 
correlation properties of the sea clutter and show how they can be taken into account 
in this model. 

2.3.1 Temporal correlation properties 

The return observed from a single resolution cell containing sea clutter is generally not 
independent from pulse to pulse. 

The form of the correlation between pulses is described by the use of the composite 
model: over a short period the reflected signals from any clutter resolution cell are 
always Rayleigh-distributed, indicating a return from multiple scatterers, and this 
speckle component has a Chi-distributed underlying mean level, which characterises, 
for example, the mean level variation of clutter spikes or the periodic variation in 
amplitude seen when looking up or down the sea swell. 

The speckle component from any individual resolution cell has a short temporal 
decorrelation period (typically a few milliseconds) and is fully decorrelated pulse to 
pulse by frequency agility. In contrast, the mean level has a long temporal 
decorrelation period and is not affected by frequency agility. 

Therefore, the temporal autocorrelation function of the sea clutter has a fast drop-off 
which is followed by a slower periodic decay [15,17]. 

If sea clutter signals reflected from the individual resolution cell are observed and 
processed on time intervals much shorter than the average decorrelation time of the 
modulating process (as is actually the case for many operational radar systems), then 
according to the composite scattering model the return strength of these signals is 
proportional to the sea clutter radar cross-section per unit area, but is essentially 
constant during the time a single resolution cell is illuminated. Thus the modulating 
process exhibits negligible temporal fluctuations within the radar coherent processing 
interval or dwell. In this case the overall correlation properties of the returned signals 
are dictated by those of the rapidly varying component of the sea clutter. 

If the sample mean of the time series from an individual resolution cell (which has 
short duration compared to the average decorrelation time of the modulating process) 
is first removed before correlation is performed, the autocorrelation function of the 
speckle component can be found: 

N-l 

ACFk=^r-- , (12) 

HXnX*n 

where * denotes the complex conjugate; xn is the complex received signal 
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*„=a„exp(;ej , (13) 

<*n   =i xl+xl  . (14) 

0n =arctan(^) , (15) 
Xcn 

where an and 9„ are the envelope magnitude and phase of the quadrature 
components, respectively, and subscripts c and s denote the in-phase and out-of-phase 
quadrature components. 

For a symmetrical clutter spectrum, centred about zero Doppler, this autocorrelation 
function is a real and even function [4]. If the spectrum has a net Doppler shift, the 
autocorrelation function is the product of the real function from the zero-Doppler-shift 
case with a complex sinusoid exp(±-/co</r), where cod is the angular Doppler 
frequency and T is the time lag. The sign in the complex sinusoid is associated with the 
direction of the Doppler shift. Therefore, for a symmetrical sea clutter spectrum that 
can be represented by a Gaussian function, the spectral width and the Doppler shift 
can be determined from the autocorrelation function. As sea clutter spectra are seldom 
symmetrical, the following empirical relationships, which have been found to work 
reasonably well for X and S-bands [4], are used: 

1) the 3 dB spectral width of the sea clutter is approximately equal to the inverse of 
twice the decorrelation time. The decorrelation time of the sea clutter has to be 
obtained by measuring the time it takes the envelope of the sea clutter correlation 
function (for the speckle component) to decay to 1/e of its peak value, where e is the 
base of the natural logarithm; 

2) the Doppler shift has to be estimated using the period of the modulating sinusoid 
for the autocorrelation function (for the speckle component). This period is 
determined from the distance of the second zero-crossing of the imaginary part 
from the origin. The imaginary part of the autocorrelation function starts at zero, 
and the point of the second zero-crossing represents a full period. 

2.3.2 Spatial correlation properties 

The spatial correlation of sea clutter is defined as the cross correlation between the 
signals returned from two separate patches of the sea in the radial dimension. The time 
interval separating the measurement of these two signals is assumed to be so small 
that there is negligible time decorrelation [3]. 

Spatial correlation of sea clutter reflected signals is a well-known phenomenon [3, 33, 
35, 36], caused by the relation of the sea clutter modulating process to the surface 
profile of the sea. While microwave signals are primarily scattered by capillary waves 
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of the sea (speckle), the undulating structure of the sea gravity waves causes variations 
in the mean power scattered from a given patch (modulating process), which are 
mechanistically explained in terms of bunching of contributing scatterers and local 
tilting of the mean surface slope. Therefore, it is reasonable to assume that the degree 
of correlation of the modulating process between resolution cells depends on the 
spatial correlation of the sea surface, and that this process has a decorrelation distance 
of the same order of magnitude as the decorrelation distance of the sea. It is also clear, 
that in well developed swell conditions, a periodic component will be present in the 
spatial autocorrelation function of the modulating process. Concerning the correlation 
properties of the speckle, it is necessary to note that, for a given realisation of the large 
scale structure, the small scale features at two spatially separated patches are usually 
uncorrelated - so, the speckle is assumed to be entirely decorrelated from one range 
cell to the next. 

As a result, the overall spatial autocorrelation function is given by the sum of two 
terms: a spike at the origin and a scaled version of the autocorrelation function of the 
modulating process, from which it may be concluded that the spatial correlation 
characteristics of the sea clutter are solely dependent on the modulating component. 

Sometimes it is more convenient for the purposes of analysis and modelling to use the 
spatial autocorrelation function of the mean clutter reflectivity rather than the spatial 
autocorrelation function of the modulating process (ie clutter mean level). According 
to the compound K-distribution model, the average clutter reflectivity,T,, in any one 
range cell can be expressed in terms of the local mean level v, of the clutter as [33] 

X. =4^- = af , (16) 
K 

where a] is the squared amplitude of the reflected signal averaged over number of 

successive pulses from i'h range cell. 

The spatial autocorrelation function of the clutter mean reflectivity can be estimated 
from the experimentally collected data by using the following procedure [33]: 

1) the radar returns from each transmitted pulse are recorded as a series of samples in 
range: a, , i=l,2,...,M, where ai is the amplitude of the received signal for V range 
sample number; 

2) each point in range is averaged by integrating successive returns from the same 
range, decorrelated, either temporally or by using frequency agility, in order to 
remove the speckle component of the clutter, and yield profiles of the mean level y : 

y. = a. , i=l,2,...,M . The integration period is assumed to be short compared with 
the correlation period of the underlying mean clutter level; 
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3) the average reflectivity at each range X, = a; , i=l,2 M is estimated by squaring 
these data; 

4) the spatial autocorrelation function of the clutter mean reflectivity is estimated for a 
number of profiles using 

M/ 
A 

SACF<=J^y2—:—- <17> 
5>,-m)2 

1=1 

1 <£ 
where m = — 2^x,   and M is the number of range samples in each profile. 

5) the final spatial autocorrelation function of the clutter mean reflectivity is obtained 
by averaging equation (17) over groups of successive profiles of the mean clutter 
reflectivity. 

Note that it may be quite difficult to accurately estimate the spatial autocorrelation 
function from short data records. 

2.4 Prediction of the K-distribution parameters for lower resolution 
radar using information about these parameters for high resolution 
radar 

The data reported in the literature [33,36] indicate that any variation in radar 
resolution results in a corresponding variation of the shape parameter of the 
generalised Chi-distribution of the sea clutter modulating process. It was also shown, 
that the returns from groups of m correlated, identically K-distributed resolution cells 
can be related to a single return from a single resolution cell m times larger, whose 
clutter mean level component is Chi-distributed with a shape parameter dependent 
upon the spatial correlation of the original cells. As the distribution of the clutter 
speckle component remains unchanged with radar resolution, the distribution of the 
overall clutter envelope is still K-distributed, but with different shape and scale 
parameters. 

Thus, if parameters of the distribution and spatial correlation of the underlying mean 
level for the high resolution radar are known, this information may be used to estimate 
the model parameters of clutter for different resolution cell sizes, as the range 
resolution is reduced. The results of this study would be particularly useful for 
extending the applicability of data recorded at a particular resolution to provide clutter 
statistics at different resolution. 
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Assuming that the echo from each resolution cell for a high resolution radar is 
modelled by a K-distribution with the shape parameter V and the scale parameter c, 
and that the m echo amplitudes are correlated, the estimates of the characteristics of 
echo from a large resolution cell which comprises all the m smaller cells are given by 
[36] 

v^-^-, (18) 
oc-1 

c„=cP^  , (19) mv 

1 v + 1 
a =  

m   V 

m-l • 

1 + 2^(1 —)SACF, 
<=i 

(20) 

where V m is the shape parameter and cm is the scale parameter of the K-distribution of 
the overall echo amplitude. 

The problem of using the formulas (18) - (20) is that the compound clutter model may 
not be applicable to resolution cell areas below a certain lower limit. There exists no 
published results at the present time to suggest a value for this limiting size. It is 
important to note also, that these formulas are only valid for the class of clutter 
modelled by the K-distribution. 

3. Simulation Of Sea Clutter Returns 

Representative clutter models are important in evaluating radar detection 
performance, particularly in radars that employ constant false alarm rate processors to 
adapt the detection threshold to the local background noise or clutter power. Temporal 
and spatial correlation of the sea clutter affects constant false alarm rate detection 
performance, the analysis of which therefore requires techniques for describing and 
simulating temporally and spatially correlated clutter. 

So, radar returns from the sea surface must be statistically modelled for radar 
performance to be predicted and for radar parameters and signal processing 
optimisation in a maritime environment. In order to do this correctly, it is necessary to 
develop realistic models of sea clutter based on estimated real data statistics. 

3.1 Computer generation of K-distributed radar sea clutter with 
specified temporal correlation properties 

As clutter can be highly correlated, realistic modelling of the clutter returns involves 
incorporating the correlation information into the joint probability density function 
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(PDF) of the clutter sample. In the simplest case of statistically independent returns, 
the joint PDF is simply the product of the marginal PDFs. Modelling dependent non- 
Gaussian clutter is however a very difficult problem, which is equivalent to the 
problem of generating random variables with a jointly specified marginal PDF and 
covariance matrix. It is straight forward to control either the PDF or the correlation 
function but it is more difficult to control both of them simultaneously. This problem 
can be solved by using one of the two following procedures: 

1) zero memory nonlinear (ZMNL) transformations on a correlated Gaussian 
sequence to obtain the desired non-Gaussian sequence [5, 7,9-11,14]; 

2) applying the theory of spherically invariant random processes (SIRPs) [37-42]. 

Using ZMNL transformations on a correlated Gaussian sequence does not offer a 
practical solution to the joint problem for several reasons: 

• as the covariance matrix of the non-Gaussian sequence is related to that of the 
Gaussian sequence in a rather complicated manner, it is not always possible to 
determine the corresponding covariance matrix of the Gaussian sequence for given 
a certain covariance matrix of the non-Gaussian sequence; 

• if the Gaussian sequence at the input of the nonlinear transformation is 
bandlimited, the output is also bandlimited if and only if the nonlinearity is a 
polynomial. Moreover, for input Gaussian processes, any ZMNL transformation 
smooths and broadens the output spectrum; 

• ZMNL transformation approaches do not afford independent control of the 
marginal PDF and correlation function; 

• the nonlinear transformation imposes a specific relationship between the 
covariance matrix at its input and output. Therefore, given a covariance matrix at 
the output of the nonlinear transformation, the nonnegative-definite property of 
the covariance matrix at the input is not guaranteed 

In contrast, the theory of SIRPs provides mathematically tractable techniques to 
construct multivariate non-Gaussian PDFs: the PDF of every random vector obtained 
by sampling a SIRP is uniquely determined by the specification of a mean vector, a 
covariance matrix, and a characteristic first-order PDF. 

A SIRP is a special case of an exogenous product model, which agrees with the 
composite scattering theory for sea clutter with K-distributed amplitude, and 
according to which the clutter is modelled as a zero-mean complex correlated 
Gaussian process v(t), modulated by a real, non-negative, stationary non-Gaussian 
process y(t), independent from v(t): x(t) = y(t)v(t). The modulating process y(t) is 
assumed to have a much longer decorrelation time than v(/), and change little over 
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short time spans. The complex correlated Gaussian process v(t) may be modelled as a 
complex white Gaussian process w(t) filtered through a linear (possibly time-varying) 
system, whose impulse response is determined by the correlation properties of v(t). 

The main feature of this model is that it allows independent control of the amplitude 
PDF, which is dictated by the first-order PDF f(y) of the modulating process y(t), 
and of the correlation properties, which are essentially those of the Gaussian process 
v(f). In [39] it is shown that, according to the total probability law, the envelope 

a{k) = y(k)\v(k)\ of the resulting sequence has the marginal PDF 

«'i^-Äj'''"*'        (21) 

where G2(k) is the mean square value of the clutter quadrature components and 
y(fc)has been assumed, without loss of generality, to have unit root mean square 
value. 

Therefore, the amplitude distribution is uniquely determined by the marginal PDF 
/(y) of the modulating process y(k). Moreover, because y(k) and v(k) are 
independent, the complex correlation function of x(k) is given by 

ACFX(n,m) = ACFy(m)ACFv(n,m) , (22) 

where ACFy(m) is the autocorrelation function of y(k) and ACFv(n,m) is the 

complex autocorrelation function of v(k). Since ACFy(m)~\ for any m where 

ACFv(n,m) is not vanishingly small, the overall correlation properties of x(k) are 
approximately those of the underlying Gaussian sequence. 

The appropriate f(y) for the K-distribution is a generalised Chi-PDF [39]: 

/(y) = |f-y2v-'exp(-vv2). (23) 
r(v) 

For time periods, whose duration is short compared to the decorrelation time of the 
modulating process y(k), the overall process x(k) can be generated by the product of 
a Gaussian process v(k) and a modulating random variate v, rather than a 
modulating random process y(k): x(k) = yv(k). This replacement leads to a SIRP. 

The multivariate PDF of the complex SIRP x(k) is given by 
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/x(x) = (2nyN\M\-% ]y'2Ncxp 
-(x-m)rM"'(x-m) 

2y2 f(y)dy, (24) 

where 
x = \xc ,xcN ,xsl ,...,arjA,|   is a 2N-dimensional vector whose elements are N samples 
from the inphase and quadrature components; 
m and M are the average and the covariance matrices of x, respectively. 

Due to the structure of x its covariance matrix takes on the form 

M = 
M„    M. 

(25) 

where Mcc and M„ are the covariance matrices of the inphase and quadrature 
components, respectively, and MfJ and MJC are their crosscovariance matrices. 

According to [40], certain conditions need to be satisfied when x(t) is a wide-sense 
stationary SIRP: 

• the quadrature components must have zero mean; 

• the envelope of the pairwise quadrature components must be statistically 
independent of the phase, and the phase is Uniformly distributed over the interval 
(0, 2n). This results in the pairwise quadrature components being identically 
distributed and their joint PDF being circularly symmetric. This also results in the 
orthogonality of the pairwise quadrature components at each sampling instant; 

• the autocorrelation function and crosscorrelation function of the quadrature 
processes of the complex process x(t) = xc(t) + jxs(t)must satisfy the conditions 
given by 

ACFcc(x) = ACFJx), (26) 

ACFcs(x) = -ACFsc(x) , (27) 

where ACFaa{%) = E[xa{t)xa(t-x)] and ACF^x) = E[xa(t)xb(t -X)]. Also, the 
nonnegative-definite property of the correlation matrix of x must be satisfied. 

Clearly, if sea clutter is observed and processed on time intervals much shorter than 
the average decorrelation time of the modulating process (large-scale phenomenon), 
then it can be considered as a SIRP to a reasonable degree of approximation [38]. 
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A mathematical model for the high-resolution radar sea clutter, which takes into 
account the variations of the average backscatter coefficient, is obtained by assuming 
that the value of this coefficient is constant in a given resolution cell, and hence in 
intervals of duration of T corresponding to the illumination time, but varies from cell 
to cell according to the PDF f(y) of the modulating process y(t). 

In a short-time simulation by block of length N, a complex N-dimensional vector has to 
be generated, whose components are samples from the complex envelope of the clutter 
process, or, equivalently, a 2N-dimensional real vector, whose components are samples 
from inphase and quadrature components of the clutter. 

As the closed form of the characteristic PDF is known for K-distributed sea clutter and 
since an efficient algorithm producing the Chi-distributed variable y exists [39], the 
simulation procedure based on following steps can be implemented: 

1) generate a random variable y from the characteristic PDF /(y) given by (23); 

2) generate a    2N-dimensional white zero-mean Gaussian random vector W, 
having identity covariance matrix; 

3) perform the linear transformation to obtain the 2N-dimensional spherically 
invariant random vector (SIRV) V with the desired covariance matrix given by 

V = GW , (28) 

where 

G = ED* , (29) 

E is the matrix of normalised eigenvectors of the covariance matrix M, 
D is the diagonal matrix of eigenvalues of M , 

4) obtain N-dimensional vectors of the Rayleigh-distributed envelope U  and the 
uniformly distributed phase F of the quadrature components of the vector 

V = [VC    V5f: 

U = VVc2 + V' , (30) 

V 
F = arctan(—-) . (31) 

c 

5) generate the product given by A = yU to obtain N-dimensional vector of the K- 
distributed amplitude of the sea clutter with desired correlation properties. 

Note, that the N-dimensional complex vector X is determined by 
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X = Aexp(;F) , (32) 

and its quadrature components, which have the generalised Laplace distribution, can 
be found using well-known formulas: 

Xc = Re{X} and Xs =Im{X}. 

According to the simulation procedure, the average power G2 of the quadrature 
components is equal to unity. In order to obtain the quadrature components with the 

average power a2 > 1, it is necessary to perform the transformation: 

(33) 

3.2 Computer generation of K-distributed radar sea clutter with 
specified spatial correlation properties 

As it was shown in the SIRP method, which is based on the compound approach, the 
Gaussian noise is filtered and then modulated by the process with the Gamma- 
distributed power to provide a K-distribution for the amplitude. So, this technique 
introduces the non-Gaussian property through the Gamma modulation. Therefore, it 
is necessary to develop an efficient algorithm for modelling of a correlated Gamma- 
distributed process with desired spatial correlation properties. 

To analyse directly the effects on constant false alarm rate detection performance of the 
correlated Gamma-distributed modulation process with arbitrary autocorrelation 
function, the n-th order multivariate Gamma distribution is required. No unique 
representation of such a multivariate Gamma distribution exists, with several 
alternative representations being available [14, 19, 43]. The generalised multivariate 
Gamma distribution representation is applicable to modelling of the modulating 
process, but unfortunately for n > 2 the mathematics becomes exceedingly 
complicated, even before compounding with the speckle is attempted. 

Considering the slowly varying modulating component in detail, it has been found 
that approximating this component from its first- and second-order statistics alone 
provides a reasonable fit to the experimentally collected data. 

In [44] a method of generating spatially correlated clutter based on linear filtering of an 
uncorrelated gamma process has been described. This yields the correct modulation 
process spatial autocorrelation function, but the resulting clutter is not exactly K- 
distributed and consequently has incorrect higher order moments. 
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In [45] a method for the simulation of correlated K-distributed clutter that involves 
applying moving average filters to sequences of independent Gamma-distributed 
variables has been proposed. The resulting sequences are summed to obtain the 
required correlation properties. Unfortunately this procedure becomes increasingly 
complex as the correlation length (or non-zero lag) increases. 

In [46] a procedure which yield precisely K-distributed samples of arbitrary spatial 
autocorrelation function has been presented. The key advantages of this procedure are: 

1) the spatial correlation is introduced to Gaussian processes, thus enabling well 
established linear filtering techniques to be used; 

2) the resulting clutter process is strictly K-distributed; 

3) it leads to useable expressions for the multivariate description of the modulation 
and clutter processes. 

The procedure is based on a compound clutter model according to which K-distributed 
clutter is represented as the product of a Rayleigh speckle component and the square 
root of a Gamma-distributed modulation process: 

a = yi) VT~I> , (34) 

where a is the amplitude of the K-distributed clutter, 1) is the Rayleigh speckle 
amplitude, v is the Chi-distributed amplitude envelope modulation process, and T is 
the Gamma-distributed power modulation process. 

As the speckle is modelled as being independent in adjacent range cells, then the 
spatial correlation properties are solely dependent on the modulating gamma 
component. 

From probability distribution theory, if X is Gamma-distributed with shape parameter 

V  , then if V =(m + 1j/, m = 0, 1, 2,..., the PDF of x   reduces to the Chi-Square 

distribution, which can be generated as the sum of squares of n = 2v independent 
zero-mean Gaussian processes, g,. Correlation of the modulation process can then be 
introduced on the constituent Gaussian processes by well established linear filtering 
techniques, and the correlated Gamma component can be obtained as the sum of the 
squares of a small number of Gaussian components with the same autocorrelation 
function. 

The correlation between the two gamma variables x, and x2 is obtained from 

E(x ,x 2), where £(.) denotes expectation, such that [46] 
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^(^i^)m] = /J(x1x2)
m/T,T2(t,,x2)^1^2 , 

o o 

where 
1 

™ - — ,1 for the voltage and power modulation processes, respectively; 

/T, ,TJ (
T
 ! >T 2) is the bivariate Gamma PDF of the modulation process: 

(35) 

U.xS^^i) = - 
1 (v-l) 

r+,pv-'(i-p^r(v) 
(x,x2)  

2   exp-U T.+T2 

2(l-p2) "v-l 
i-P2 

,   (36) 

n 

T;=E^'     for        H'2' 
i=i 

(37) 

G/ - {g;pgj2}  for »=l/»,n is the sample of n independent unit variance zero-mean 
Gaussian   vectors   with   the   correlation   factor   between   corresponding   samples 
£(*,-i&2) = P; 
/„ (x) is the modified Bessel function of the first kind of order n. 

Each of X, ,T 2 is Chi-Square-distributed with n degrees of freedom. Substituting (36) 
into (35) gives for 0 < p < 1 

£[(T,T2)"] = _2_0-p_) 2\VI-2B 

T(v) "IP 
2,  [r(v+/ + m)]2 

r(v + i>r(v+i) 
(38) 

For p = 0 the value of £(T,T2) = 4v2 and for p = 1 the value of £(T,T2) = 4v(v + 1). 
This gives the correlation coefficient ptt2 between two samples of the modulating 

process in terms of the correlation coefficient p between corresponding samples of the 
constituent Gaussian process: 

Pt.t, = 
E(T,T2)-E(T,)E(T2) 

#(^T#Ch) 
(39) 

If p is varied as a function of the lag k = \i - j\ between the samples g(1 and gl2 (and 

consequently between x, and x2), then equation (38) can be used to describe the 
spatial autocorrelation function of X in terms of that of the g,. A numerical approach 
can be used for the reverse operation of (38) as usually an analytical solution is not 
available. If m = 1, (38) yields the invertible expression for the spatial autocorrelation 
function of X as 
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RTX(k) = 4v{[Rgg(k)]2+v] , (40) 

where Rgg(k) is the autocorrelation function for the gr 

Thus, the correlation coefficient between the two Gamma variables corresponds to the 
square of the correlation coefficient of the Gaussian components used to generate the 
Gamma variable. 

The preceding derivations can be generalised by letting v take on arbitrary positive 

values V * - , where m is an integer. Because it is impossible to have a non- 

integer number of constituent Gaussian processes, a memoryless nonlinear 
transformation is required to transform a Chi-Square-distributed process X   with n 

degree of freedom (n = 2v' and v' = 'm + % ), into a Gamma-distributed process x 

with shape parameter v  (V *- ), that is T(ZJ,V) where b is any desired scale 

parameter. The required transformation in the case of n=2 is given by the following 
equation [46], which must be solved for X   in terms of X 

x =-21n 1 — Y(v,—) 
r(v)rv   b' 

(42) 

where y (.) is the Incomplete Gamma function. 

Therefore,  for  integer  or  semi-integer values  of  the  shape  parameter     V,  the 
modulation process is generated as the sum of the squares of a number (n = 2v) of 
independent zero-mean Gaussian processes, each of which has its autocorrelation 
determined from (41). 

(m + 1). .    ,   , 
Obtaining a Gamma-distributed process of arbitrary   V   (V * —-—) includes two 

stages: 

1) the modulation process X is generated as the sum of the squares of two 
independent zero-mean Gaussian processes, each of which has its 
autocorrelation determined from (41); 

2) this process X is used for a nonlinear transformation procedure (determined 
from (42)) to obtain a Gamma-distributed process for arbitrary V . The nonlinear 
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transformation is organised by numerically solving equation (42) for every 
sample of the process X . 

An important advantage of this model is that the spatial correlation is introduced to 
Gaussian processes, thus enabling any required autocorrelation function to be obtained 
while a Gamma distribution for the resulting process is maintained. 

The   K-distributed   clutter   is   obtained   by   multiplying   the   spatially   correlated 

modulation y = VX with the speckle, onto which the desired temporal correlation 
properties have been imposed. 

3.3 Influence of thermal noise on the amplitude distribution of sea 
clutter returns 

The presence of thermal noise in the radar receiver, which in general cannot be 
neglected, modifies the distribution of the received signals. According to published 
results [43, 47], the distribution of K-distributed clutter combined with additive 
thermal noise is not K-distributed and a closed-form expression defining this 
distribution does not exist. 

Assuming that the noise takes the form of an uncorrelated zero-mean Gaussian process 
added to the received signals before processing, the mean-square power level of this 
noise is defined by relation [3] 

Pn=kTAf, (43) 

where k is the Boltzmann's constant [equal to 1.38 * lO"23 W/(Hz)(° K) ], T is the system 
noise temperature, A/" is the noise bandwidth of the receiver after amplification but 
before envelope detection. 

The system noise temperature includes the antenna temperature, environmental 
effects, and the noise of the receiver itself. 

In most computations the noise bandwidth is assumed to be 1/x ube, where X uis, is 

the pulse duration, unless more exact calculations are necessary. In distributed clutter 
environment calculations, the effective pulse duration Xpulse should be used for more 
accuracy [3]. 

The clutter to noise ratio (CNR) is given by 

CNR = y. (44) 
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where Pc is the mean-square power level of the clutter. 

If the simulated data has a low clutter to noise ratio (CNR < 10 dB), then the resulting 
amplitude distribution will be significantly altered from a standard K-distribution [47] 
and the low amplitude values of the clutter amplitude distribution will be the most 
affected by this noise: for small values of the amplitude the additive noise increases the 
final power significantly while for large values it leaves the power almost unchanged. 
Furthermore, the amplitude is concentrated about its mean value for large values of 
the shape parameter v with a low probability for small values of the amplitude. Thus 
the added noise makes little difference to the final distribution. However, for small 
values of the shape parameter v the amplitude distribution is very spiky with a high 
probability for small values of the amplitude. These are affected considerably by 
additive noise. 

The noise + clutter samples are generated by adding the inphase and quadrature 
components of a complex valued Rayleigh random variable to the respective 
components of a complex valued K-distributed random variable. 

4. Implementation of sea clutter simulating 
procedures 

This section of the report describes the software package for synthetic generation of sea 
clutter returns that has been based on the results of the previous sections. A 
comparison is made of a single experimentally collected data set with the output of the 
model, which uses the same parameters as were estimated for the data set. The 
software package is a part of the MATLAB based sea clutter analysis tool which was 
developed in the TSSD DSTO in order to analyse the properties of sea clutter over a 
wide range of radar system and environmental parameters. This tool provides a 
relatively simple basis upon which to test new and existing radar processing and 
detection methods on both experimentally collected and synthetically generated sea 
clutter data. 

4.1 Description of the software package for synthetic generation of sea 
clutter returns 

The software package consists of: 

1) an interface for entering the parameters of the simulation; 

2) a section for generating the clutter, the output of which is the array of raw complex 
I and Q data for the K-distributed model of the sea clutter; 

3) a graphical display of the data, which presents an image of the generated amplitude 
returns; 
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4) a section for different types of data analysis: correlation properties analysis, 
statistical analysis (histogram and distribution analysis - estimation of the 
parameters of the sea clutter distribution using different methods) and spectral 
analysis (spectrum characteristics and frequency-time domain analysis (20 points 
FFTs)). 

Figure 1 schematically presents the parameters that are needed for proper simulation 
of sea clutter returns. Some of these parameters are radar system parameters such as 
antenna gain, beamwidth, radar frequency, polarity, transmitted power, noise 
temperature, bandwidth, PRF, grazing angle, two-way antenna pattern value at the sea 
surface, range resolution and range to centre of clutter cell. Others are environmental 
parameters responsible for the sea clutter characteristics: sea state for a "fully arisen" 
sea under conditions of stationary equilibrium, or wind velocity and average wave 
height for the conditions of changing wind; swell direction relative to the wind 
direction and look direction relative to the wind direction. All these parameters should 
be defined and entered using the created interface before the sea clutter generation 
starts. 

Wind direction 

 > 
Look direction 

Antenna gain 
Radar Frequency 
Polarity 
Transmitted power 
Noise Temperature 
Bandwidth 
PRF 
Grazing Angle 
Two way antenna pattern 

at surface 

Wind velocity 
Wave height 

Range to 
centre of 

clutter cell 
Resolution 

Figure 1 Important parameters for sea clutter simulation 

Figure 2 illustrates the sequence of actions in calling the procedures used in the 
package for generation of the clutter data sets. The process of simulation can be split 
into four main stages: 

1) prediction of clutter amplitude characteristics (magnitude and distribution); 

2) prediction of clutter correlation characteristics; 
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3) SIRP based simulation of clutter with desired parameters and correlation 
properties; 

4) addition of thermal noise to formed sea clutter data. 

The block diagram presented in Figure 3 shows the order of calling of the procedures 
for prediction of clutter amplitude characteristics. This process includes: 

1) prediction of the average radar cross-section per unit area G0 using one of the 
established sea clutter models (SIT, GIT, TSC or HYB); 

2) prediction of the K-distribution shape parameter, v, using one of the existing 
empirical formulas given by Ward, Watts and Wicks, or Ryan and Johnson [31, 32, 
34]; 

3) calculation of the average clutter power at the receiver according to the radar 
equation; 

4) calculation of the K-distribution scale parameter c using the relationship between 
the K-distribution parameters and clutter power at the receiver. 

Radar Frequency 

Sea state 
(wind velocity, 

wave height) 

Grazing Angle 

Look direction 

Polarity 

Resolution 

Range resolution 

Radar PRF 

1 lag time 
coefficient 

1 lag distance 
coefficient 

Clutter Dopplet 

Antenna 
gain 

Two way 
antenna pattern 

value at the surface 

range 

Figure 2 Ftoio chart showing procedures for simulation of sea clutter returns 
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Prediction of clutter correlation characteristics is based on the analysis of 
experimentally collected data for the similar conditions to those which are chosen for 
simulation. 

The package can simulate both temporally uncorrelated and correlated sea clutter 
returns. In the case of temporal correlated data, the temporal autocorrelation function 
and its parameters have to be defined. The current version of the package gives the 
following choice of descriptions of temporal autocorrelation function: 

TACFi(x) = p\^txp(j(odx) , (45) 

£>' 
7äCF2(T) = p,*   expOüvD, (46) 

where p, is the one-lag correlation coefficient for the temporal autocorrelation 
function, x is the time lag, At is the value of time sample step, and (dd is the angular 
Doppler frequency. 

It is possible to use a temporal autocorrelation function derived from experimentally 
collected data. 
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Range to centre of 
clutter ceil 

Sea state 
Wind velocity  y. 
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pattern at surface 
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Radar Frequency 

K distribution      .. 
shape parameter   V 

Clutter 
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P. 
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Figure 3 Flow chart showing procedures for prediction of clutter amplitude characteristics 
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Analogously, both spatially uncorrelated and correlated sea clutter returns can be 
simulated. In the case of spatial correlated data, the spatial autocorrelation function 
and its parameters have to be defined. The current version of the package gives the 
following choice of descriptions of spatial autocorrelation function: 

SACF,(r) = p' (47) 

5ACF2(r) = Pl 
Ar (48) 

where p is the one-lag correlation coefficient for the spatial autocorrelation function, 

r is the distance and Ar is the value of range resolution. 

It is also possible to use a spatial autocorrelation function derived from experimentally 
collected data. 

Figure 4 shows the order of calling of procedures for SIRP based simulation of sea 
clutter returns. The model of sea clutter presented by this figure has a physical 
interpretation in the light of the composite scattering theory, according to which the 
predetection clutter can be viewed as a Gaussian random process, resulting from 
diffusion by a large number of elementary scatterers, modulated by a highly correlated 
process which accounts for the gross reflectivity characteristics of the illuminated 
patch. 
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■ IMPOSE 

CORRELATION 

K - distributed data with 
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Figure 4 Flow chart showing procedures for SIRP based simulation of sea clutter returns 
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If this compound process is observed by windows much shorter than the average 
decorrelation time of the modulating process, so that this process is constant inside any 
window, then the model of Figure 4 applies with the modulating process degenerating 
into the modulating variate, changing from window to window. With this 
approximation the temporal correlation properties of the compound process for each 
range cell coincide with those of the underlying Gaussian process. So, once the 
spatially correlated Chi-distributed sequence of the modulating variate for the 
simulating number of range bins has been obtained, the effect of coherent imaging can 
be simulated by generating for each sample in the sequence a new temporally 
correlated samples from a Rayleigh distribution with mean equal to the original 
sample value. This process models the effect of spatially uncorrelated multiplicative 
speckle noise and produces K-distributed samples. The spatial correlation properties of 
the new process will be the same as those of the Chi-distributed process apart from a 
spike at zero lag in spatial autocorrelation function arising from the spatially 
uncorrelated speckle. 

Therefore, the designed process for the simulation of the sea clutter returns, based on 
this approach, starts from the procedure of forming of the generalized Chi-distributed 
data with the chosen spatial correlation properties. The generation of the correlated 
data with such a distribution has been described in detail in section 3.2 of this report. 
Note, that in the case of the modelling of spatially uncorrelated Chi-distributed data, 
the much more simple procedure is used [39]. This procedure is based on well-known 
fast methods of generating the Gamma-distributed data. Then the theory of SIRPs is 
applied in order to form the desired temporal correlation properties. All stages of this 
procedure have been described in section 3.1 of this report. Note, that in the case of the 
modelling of temporally uncorrelated data, the covariance matrix M (25) has a 
diagonal structure: 

Kl,=lk (49) 

^4=IM4=0 • (so) 
As a result of these steps we get an array of raw complex I and Q data for the K- 
distributed model of the sea clutter. 

The final step in the simulation process is addition of thermal noise to the sea clutter 
data. The power of noise is chosen according to the desired value of the clutter-to-noise 
ratio. 
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4.2 Performance results of the simulation procedures 

Before generating the K-distributed synthetic sea clutter returns, it is necessary to 
define all parameters responsible for the different properties of the signals: shape and 
scale parameters, Doppler frequency, temporal and spatial autocorrelation functions, 
clutter-to-noise ratio. To verify the correct functioning of the package, we analysed an 
experimentally collected sea clutter data set using the INGARA radar system, and 
deduced the underlying shape, scale and other statistical parameters. We then 
generated a data set using the same parameters, and compared the overall properties 
with the original data set. 

The INGARA radar system was developed within the Tactical Surveillance Systems 
Division of DSTO as a technology demonstrator aimed at investigating and 
demonstrating the application of Synthetic Aperture Radar to the unique surveillance 
challenges posed by the large sparsely populated areas across the Northern Australian 
coastline. The main sensor of the INGARA system is a coherent, horizontal polarised, 
X-band multi-mode radar system. The flexible nature of the design of this radar 
system, based on open architectures, has allowed for the addition of maritime 
surveillance modes specifically designed to collect radar backscatter from the surface 
of the ocean (sea clutter). 

The data set that has been chosen, was taken from the database of experimental data, 
which were collected between 9 and 11 November 1993 at Port Noarlunga South, 
South Australia, using the INGARA radar system at frequency of 9.375 GHz . For this 
trial the radar was set up on a cliff-top approximately 30 m above the sea surface. Most 
of the data consists of files containing 30 seconds of data, collected with the radar 
pointed in 15° intervals in azimuth angle between each data run. The azimuth angular 
range of the measurements was from 210° to 345°. 

The chosen data set consists the data for the antenna looking at an angle of 330 . The 
measured meteorological conditions were : 

• Wind Speed 5.9 m/s 

• Wind Direction 116° 

• Air Temperature 15.7°C 

• Sea Temperature 1&6°C 

• Relative Humidity 55.6 

• Barometric Pressure 1014 
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Observations of the sea made from the radar site note that it was slight, with small 
wind ripples, probably sea state 2. 

The INGARA radar coherently samples data at a 50 MHz rate (3 m in range). Each 
sample is a 4-byte word that represents the HI and HQ returned signals at a particular 
sample instant (ie. each channel is digitised to 8 bits). The symbols HI and HQ refer to 
the horizontal polarised inphase and quadrature channels, respectively. 

An image of the amplitude of the clutter for the data set used in the analysis is 
presented in Figure 5. Each range window of the image represents 300 consecutive 
range samples, a 900m span, and the time duration is approximately 0.3 s with a PRF 
of 333.3 Hz. The distance from the radar to the first range bin is 3384 m. The data has 
been normalised to have unit second sample moment. 

Raw data (amplitude) plot (sea18.dat) 
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0.25 

3400   3500   3600   3700   3800   3900   4000   4100   4200 
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Figure 5 Experimentally collected sea clutter 

Figure 6 presents the averaged temporal (for the speckle component) and spatial (for 
the Gamma component) autocorrelation functions for the data set. At any range, the 
return fluctuates with a time constant of approximately 10 ms as the scatterers within 
the patch move with the internal motion of the sea and change their phase relations. 
The local mean level varies with range owing to bunching of the scatterers. The 
correlation length of the sea surface in the range direction is about 6.5 m. The duration 
( 0.3 s) of the data collection is not sufficient for the bunching to change at any given 
range. 
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Average temporal ACF (sea18.dat) 
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Figure 6 Temporal and spatial autocorrelation functions for experimentally collected sea clutter 

Spectrum across range bin 208  (sea18.dat) 
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Figure 7 Spectral analysis for the range bin of experimentally collected sea clutter 
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Frequency-time plot, range bin 208 (seal 8.dat) 
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Figure 8 Frequency-time analysis for the range bin of experimentally collected sea clutter 

Histogram of absolute normalised data for 61 range line  (sea18.dat) 
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Figure 9 Normalised amplitude histogram for a range line of  experimentally collected sea 
clutter 
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K-Distributions for different estimation methods (sea18.dat) 
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Figure 10 K-PDFs estimated by different methods for experimentally collected sea clutter 
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Figure 11 PDFs of different distributions for experimentally collected sea clutter 
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Figure 7 presents the results of spectral analysis of the range bin of the image with the 
largest value of amplitude of the echo signals, figure 8 is an image plot of frequency- 
time analysis (20 points FFTs) for the same data. 

Figure 9 is a plot of the normalised histogram of the amplitude returns. Figure 10 is a 
plot of the probability density functions for the K-distribution estimated by Watts's, 
first and second moments (FSM), and Raghavan's methods [20]. Figure 11 is a plot of 
the probability density functions for the Log-Normal and Weibull distributions 
estimated by the maximum likelihood (ML) method and the K-distribution estimated 
by Watts's method. 

Table 4 lists estimates of the parameters for the K-distribution by using these three 
methods (Watts's, first and second moments (FSM) and Raghavan's) as well as 
estimates of the parameters for the Log-Normal and Weibull distributions from the ML 
method. 

As each calculated parameter was averaged through all realisations (each realisation 
presents the echo signals from 300 range bins), the presented results are the mean 
values of these parameters. 

Table 4 Estimates of the distribution parameters by different methods for experimentally 
collected sea clutter data set 

Parameter L W(ML) K(R) K(W) K(FSM) 
v 
c 

(H)-0.53 
(a2) 0.6243 

(Y)1.3826 
(05)0.8617 

1.4110 
2.4441 

0.8778 
1.8473 

1.0077 
1.9953 

The different methods for estimation of the K-distribution parameters produce quite 
different estimates of the parameters. The reason for this is the low clutter to noise 
ratio (CNR =10.7 dB) for the experimentally collected data set. The presence of quite 
strong thermal noise in the radar receiver modifies the distribution of the received 
signals significantly. It is known [20] that in this case it may be advisable the usage 
modified Watts's method for estimation purposes. Unfortunately, this method requires 
a sufficiently large number of independent samples to estimate the higher moments 
accurately. Instead, we calculate the K-distribution parameters Watts's method 
without modifications, estimating the effective value of the shape parameter, related to 
the true value by 

V-=Vl, + ^ (51) 

where CNR is the clutter to noise ratio. 
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This method provides a reasonable fit to the tail of the data with added noise, but give 
a poor fit for the low amplitude values. Because the tail region is responsible for such 
an important detection characteristic as probability of false alarm, from the point of 
view of practical radar applications the moments methods are better in low CNR 
situations. The presented results of the statistical analysis are in agreement with this 
statement: in the low false alarm region Watts's method gives the best results. 

Table 5 lists the modified chi-squared index %l values [4] for all these distributions 
and the standard deviation Gv of the estimates of the K-distribution shape parameter 

by each method. 

The comparison of the modified chi-squared index %l values for all the distributions 
shows that the best results in the important tail area can be achieved by applying the 
K-distribution model to the sea clutter. Among the K-distribution parameters 
estimation methods, the distribution with the parameters using Watts's method gives a 
better fit in this region to the experimentally collected data histogram than the others. 

Table 5 Modified chi-squared index %l values and standard deviation Gv for different 

estimation methods for experimentally collected sea clutter data set 

Parameter L W(ML) K(R) K(W) K(FSM) 

x1 516.7934 164.7579 180.7605 

0.3654 

123.7512 

0.3349 

130.5519 

0.2596 

Analysis of the standard deviation av of the estimates of the K-distribution shape 
parameter by each method shows that the FSM method has a smaller deviation than 
Watts's method, which can be explained by smaller variability in the lower-order 
sample moments. Quite a big value of the standard deviation for Raghavan's method 
follows from the fact that it gives a good fit to the lower amplitude values, which are 
the most distorted by noise. 

Synthetic generation of sea clutter returns was implemented for the radar system with 
the same parameters. Estimated parameters for the experimentally collected data set, 
which were used as input parameters for the simulation procedures, are: 

• CNR = 10.7 dB. This value was calculated for the GIT model of the mean clutter 
reflectivity, and the radar and environmental parameters in which the data set has 
been collected; 

• the K-distribution shape parameter v - 0.74 . This value was calculated from 
equation (51), using the estimated values of the effective shape parameter v eff and 

the CNR; 
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• the K-distribution scale parameter c = 1.72 for normalised data, having unit second 
sample moment, was calculated using relation (5); 

• the average Doppler frequency fd = 65 Hz; 

• the one-lag correlation coefficient   p, =  0.87  for  the  temporal  autocorrelation 
function, presented by (46); 

• the one-lag correlation coefficient  pr = 0.56 for the spatial autocorrelation function, 
presented by (47). 

The results of this simulation and their analysis are presented in Figure 12 to Figure 17 
for a realisation of the synthetically generated process. 

The simulated data set consists of 100 consecutive pulses sampled at 300 range bins, 
totalling 30,000 sample points. The synthetically generated data has been normalised 
to have unit second sample moment. 
Figure 12 provides a crude image of the amplitude returns for the simulated sea 
clutter. 

Figure 13 presents the averaged temporal and spatial autocorrelation functions for this 
synthetically generated data set. Figures 6 and 13 show similarity of the temporal and 
spatial correlation properties of experimentally collected and synthetically generated 
sea clutter data sets. At the same time, the temporal characteristics of the data sets are 
in a closer agreement to each other than the spatial characteristics. The difference can 
be explained by the usage of the nonlinear transformation procedure for the simulation 
of specified spatial correlation properties of the K-distributed sea clutter with arbitrary 
value of the shape parameter. This procedure is necessary in order to generate the sea 
clutter data with chosen spatial correlation properties within reasonable computation 
time but adds some inaccuracy to the results. 

Figure 14 presents the results of spectral analysis for the range bin of the synthetically 
generated image with the largest value of amplitude of echo signals. Figure 15 is image 
plot of frequency-time analysis (20 points FFTs) for this range bin. Comparison of the 
spectral characteristics of the synthetically generated data (Figure 14,15) to those of the 
experimentally collected data (Figure 7, 8) shows that they are very similar to each 
other as well. 

Figure 16 is a plot of the normalised histogram of the simulated amplitude returns. The 
form and parameters of the histograms of the synthetically generated and 
experimentally collected data sets (Figures 16 and 9, respectively) are quite close to 
each other. 
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Table 6 lists estimates of the parameters for the K-distribution calculated by using the 
three methods: Watts's, Raghavan's and first and second moments. 

Table 6 Estimates of the K-distribution parameters by different methods for synthetically 
generated sea clutter data set 

Parameter K(R) K(W) K(FSM) 
V 

c 
1.3297 
2.3530 

0.9958 
1.9453 

1.0396 
2.0210 

Figure 17 is a plot of the probability density functions for the K-distribution estimated 
by Watts's, first and second moments (FSM) and Raghavan's methods [20]. 

Comparison of the results for the estimates of the K-distribution parameters for the 
experimentally collected and synthetically generated data sets (Tables 4 and 6, 
respectively) shows a smaller variance in the values of the estimated parameters in the 
case of the generated data. The reasons of such a difference are: 

•   sensitivity of Watts's estimation method of the K-distribution parameters to the 
limited number of independent samples; 

Raw data (amplitude) plot (Synth) 

0.05 

0.25 

0.3 
3400   3500   3600   3700   3800   3900   4000   4100   4200 
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Figure 12 Synthetically generated sea clutter 
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Figure 13 Temporal and spatial autocorrelation functions for synthetically generated sea 
clutter 
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Figure 14 Spectral analysis for the range bin of synthetically generated sea clutter 
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Frequency-time plot, range bin 56 (Synth) 
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Figure 15 Frequency-time analysis for the range bin of synthetically generated sea clutter 
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Figure 16 Normalised amplitude histogram for a range line of synthetically generated sea 
clutter 
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K-Distributions for different estimation methods (Synth) 

2 3 4 5 6 7 
Normalized amplitude value 

Figure 17 K-PDFs estimated by different methods for synthetically generated sea clutter 

• inability to accurately estimate the CNR using the experimentally collected data, 
because of the limited number of independent samples, leading to the necessity to 
calculate the expected CNR using one of the mean clutter reflectivity models; 

• inaccuracy of estimation and prediction of some of the parameters, which are 
needed in the sea clutter simulation, as a result of the low clutter to noise ratio; 

• the usage of the nonlinear transformation procedure for the simulation of specified 
spatial correlation properties of the K-distributed sea clutter with arbitrary value of 
the shape parameter. 

Table 7 lists the modified chi-squared index xl values and standard deviation av for 
each of these methods. 

Table 7 Modified chi-squared index  xl  values and standard deviation av for different 
estimation methods for synthetically generated sea clutter data set 

Parameter K(R) K(W) K(FSM) 

Am 165.7917 

0.3611 

133.7698 

0.4839 

135.9418 

0.3145 

The values of the parameters, presented in Table 7 for the synthetically generated data, 
are in a good agreement with those for the K-distribution model of the experimentally 
collected data, presented in Table 4. 

46 



DSTO-TR-0679 

The comparison of the analysis results for the experimentally collected and 
synthetically generated sea clutter data shows that the combination of the previously 
described in this report procedures for modelling of the K-distributed sea clutter 
provides a means of achieving good results in the simulation of sea clutter returns 
with the desired parameters of the amplitude distribution and the specified correlation 
properties. 

5. Summary 

This report presents some results of a study of sea clutter characteristics prediction and 
simulation of K-distributed sea clutter with specified amplitude distribution and 
specified temporal and spatial correlation properties. The analysis and comparison of 
the experimentally collected and synthetically generated data show that the K- 
distribution is the most promising model of sea clutter which enables simulation of 
clutter with a good level of approximation to the real data. 

For the successful implementation of the suggested sea clutter characteristics 
prediction and K-distributed sea clutter simulation procedures for a radar system 
operating in Australian environmental conditions, several problems have to be solved 
in the future such as: 

• clarification of which sea clutter model among the existing models (SIT, GIT, TSC, 
HYB) provides the best results for Australian environmental conditions; 

• validation of the existing empirical models for prediction of the shape parameter of 
the K-distribution for a radar range resolution less than 4m; 

• clarification of the effect of pulse compression on the predicted value of the shape 
parameter of the K-distribution. 

Simulators based on the developed models can be used to generate realistic sea clutter 
data which can be input to computer models of the radar system and the resulting 
performance measured. 
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Appendix 1 
SIT Sea Clutter Model 

The average radar cross-section per unit area a0  (in dB m2/m2 ) is given by the 
expression 

(0 (D W 
a0=a + ßlog^ + [5log^+y]log   v 

9c <Pc Wn 
(1.1) 

where 
(p0 and W0 are respectively the reference grazing angle in degrees and the 

reference wind velocity in knots; 
(p and Wv are respectively the grazing angle and the wind speed for which the 

clutter is described; 
a, ß, Y and 8 are constants derived from the experiments. 

The values of the reference parameters and the constants for wave length X=3.2 cm (X- 
band) are given in Table 8. 

Table 8 Sittrop's sea clutter model constants 

Wind 
direction 

Polaris. <P0 

degrees kts. 
a 

dB 
ß 

dB 
1 

dB 
5 

dB 
upwind hor. 0.5 10 -50 12.6 34 -13.2 

crosswind hor. 0.5 10 -53 6.5 34 0 
upwind vert. 0.5 10 -49 17 30 -12.4 

crosswind vert. 0.5 10 -58 19 50 -33 
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Appendix 2 
GIT Sea Clutter Model 

1. Frequency range =1 to 10 GHz 

a) Interference factor: 

a, =(14.4A, + 55)(pAflV/X, (2.1) 

4=0,7(1+0;), (2.2) 

where \ is the radar wavelength (m), (p is the grazing angle (radians) and hav is the 
average wave height (m). 

b) Upwind/downwind factor: 

Au =exp{0.2cos(t)(l-2.8(p)(^ + 0.02)-04} (2.3) 

where (j) is the look direction relative to wind direction angle (radians). 

c) Wind speed factor: 

qw = l\/(X+0.02)°A , (2.4) 

Aw = [1.94 Vw/(l + Vw/\5A)r, (2.5) 

where Vw is the wind speed which must be input separately for the conditions of 
changing wind and is given by 

Vw=S.67h°J (2.6) 

for a "fully arisen" sea under conditions of stationary equilibrium. 

d) Reflectivity (in dB m2/m2 ): 

1) Horizontal polarisation 

a0(H) = 101og(3.9 * 10-6 top0-4 A, K Aw). i2-7) 
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2) Vertical polarisation 

o0(V) = i 

c0(H) - 1.05 ln(fcflV +0.015) + 1.09 ln( A.) + 1.27 ln(q> +0.0001) + 9.70, 

3GHz<f <\0GHz 

a0(H) - 1.731n(Äav + 0.015) + 3.76 ln(X) + 2.461n(<p + 0.0001) + 22.2,        (2'8) 

/ < 3GHz 

2. Frequency range =10 to 100 GHz 

a) Interference factor: 
öv=(\4AX + 55)<?havßr (2.9) 

Ai =OJ/(1+CTJ), (2.10) 

b) Upwind/downwind factor: 

Au = exp{0.25cos({)(l - 2.89)^"} (2.11) 

c) Wind speed factor: 

qW=L93\-«M, (2.12) 

Aw=[1.94VH,/(l + Vl,/15.4)r/ (2.13) 

where V^ is the wind speed which must be input separately for the conditions of 
changing wind and is given by 

Vw=&.67h°J (2.14) 
for a "fully arisen" sea under conditions of stationary equilibrium. 

d) Reflectivity (in dB m2/m2 ): 

1) Horizontal polarisation 

CT0(//) = 101og(5.78*10>0547A/^^)/ (2.15) 

2) Vertical polarisation 

o0C) =<J0(ff) - 1.381n(/jav) + 3.43 ln(X) + 1.311n(q» + 1855 (2.16) 
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Appendix 3 
TSC Sea Clutter Model 

The equations used for the low grazing angle are: 

a) Low grazing angle factor: 

Cz=0.115S195, (3.1) 

ca=14.9(p(az+0.25)/k, (3.2) 

GA =<70 + O, (3-3) 

where A. is the radar wavelength (ft), <p is the grazing angle (radians), S is the sea state 
and C z is the surface height standard deviation. 

b) Wind speed factor: 
VW=62S0S, (3.4) 

2 = <P06, (3-5) 

A, =(1 +a/0.03)3)01, (3.6) 

A2=(1 + (V0.1)3)01, (3-7) 

A3=(l + a/0.3)3)ß/3, (3.8) 

A4 =l + 0.35ß, (3.9) 

A = 2.63 A,/(A2A3A4), (3.10) 

Gw =[(VW +4.0)/l5]\ (3.11) 

c) Aspect factor: 

f l,9=7t/2 
lexp(0.3cos(() *exp(-cp/0.17)/(A.2 + 0.005)°2),otherwise' 

(3.12) 

where Vw is the wind speed and <() is the look direction relative to wind direction angle 

(radians). 
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d) Reflectivity (in m2/m2): 

1) Horizontal polarisation 

a0(//) = 1.7*10-5cp0,GuGlVG4/(>. + 0.05),^ 

2) Vertical polarisation 

101og«y0(V)) = 

101og(a0(//))-1.731n(2.507aJ+0.05) + 3.76lnA,+ 

2.461n(sin(p +0.0001) + 19.8,/ < 2GHz 

101og(o0(//))-1.051n(2.507a: +0.05) +1.09 lnJt + ' 

1.27 ln(sincp +0.0001) + 9.65,/ > 2GHz 

(3.13) 

(3.14) 
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Appendix 4 
HYB Sea Clutter Model 

The reflectivity (in dB m2/m2 ) is given by 

G0=O0(ref) + Kg+K,+Kp + Kd, (4.1) 

where G0(ref) is a reference reflectivity applying to sea state S=5, grazing angle 

cp = O.r, vertical polarisation P-V, and upwind look direction <p = 0"; Ks, Kg, Kp, 

and Kd are decibel adjustments for arbitrary values of S, (p, P, and <|). 

a) Reference reflectivity: 

{24A\og(f)-65.2, f< 125GHz 
Go(re/H3.251og(/)-42.0,/>125G//z' (4"2) 

b) Grazing angle adjustment: 

tPr=0.1° 
9, = sin"1 (0.0632 \/o „), (4.3) 

where 9r is the reference grazing angle (in degrees), (p, is the transitional angle (in 
degrees) and a h is the root-mean-square wave height (m) such as 

a„ = 0.03152. (4.4) 

1) for(p,>(pr 

Ä". 

0,cp <cpr 

201og((p/9r),(pr<9<(p, • (4-5) 

201og((p,/<pr) + 101og((p/(p,),(p, < 9 < 30" 

2) forcp,<(pr 

^=1 ^-^ . (4.6) s     Il01og(cp/(pr),(p>(pr 
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c) Sea state adjustment: 

Ks=5(S-5), 

d)Polarisation adjustment: 

1) for vertical polarisation K   = 0; 

2) for horizontal polarisation K   is given by 

1.7 \n{hav + 0.015) - 3.8 ln(A.) - 25 ln((p/57.3 + 0.0001) - 22.2, 

/ < 3GHz 

1.1 ln(/im. +0.015) -1.1 \n(X) -1.3 ln((p/57.3 + 0.0001) -9.7, 

3GHz<f<l0GHz 

1.4 ln(/iav) - 3.4 ln(X) - 1.31n((p/57.3) - 18.6, 

/ > \0GHz 

(4.7) 

/i:. (4.8) 

where hav is the average wave height (m) obtained from 

hav = 0.0852. 

e) Wind direction adjustment: 

Krf=(2 + 1.71og(0.lA))(cos<t>-l), 

(4.9) 

(4.10) 

where <> is the radar look angle with respect to the wind direction, defined such that 
<(>=0 when looking upwind. 
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